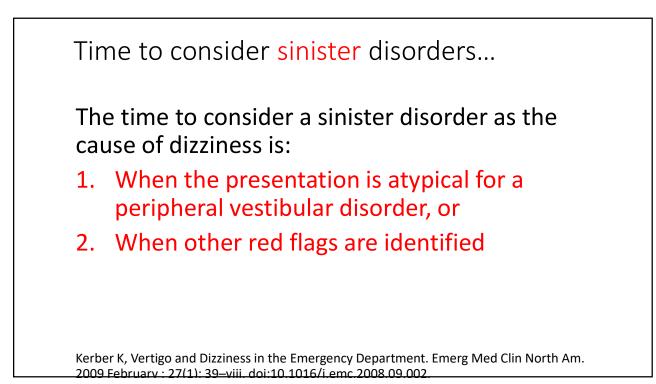
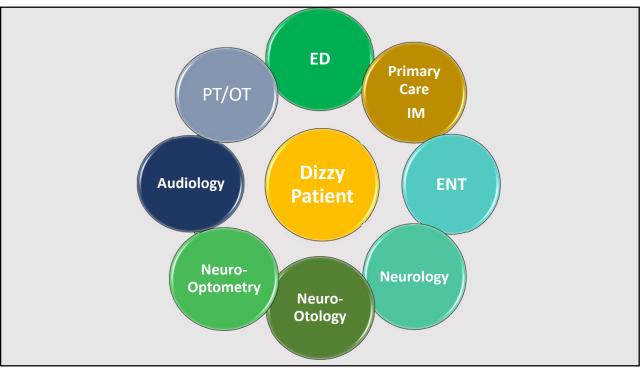

Differential Diagnosis of Dizziness using Vestibular and Cerebellar Tests


Charles 'Chuck' M. Plishka, PT, DPT, NCS

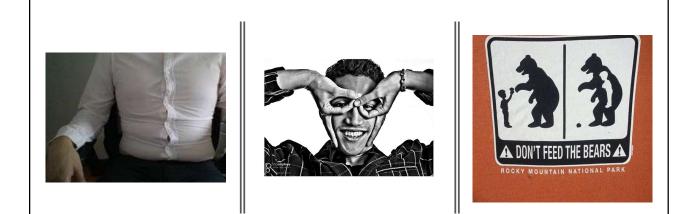
Cause of Dizziness	Each Category	Examples
Otologic	50 %	BPPV, Meniere's disease, Vestibular Neuritis/Labyrinthitis, Perilymph Fistula, Bilateral Vestibular Loss, Acoustic Neuroma
"Central" Neurologic	5 %	Stroke, Migraine, Seizures, MS, Cerebellar degeneration, Chiari malformation, Other Cerebellar disorders, Mal de Debarquement, White matter disorders
Medical	5 %	Low BP, Orthostatic Hypotension, Cardiac arrhythmia, Medication side effects
Psychological	15 %	Anxiety, Panic disorder, Malingering, Phobias, Somatization syndrome, Chronic Subjective Dizziness, Phobic positional vertigo
Unknown	25 %	Multisensory disequilibrium of the elderly, Post- traumatic dizziness, Psychogenic dizziness (when used as Dx of exclusion)

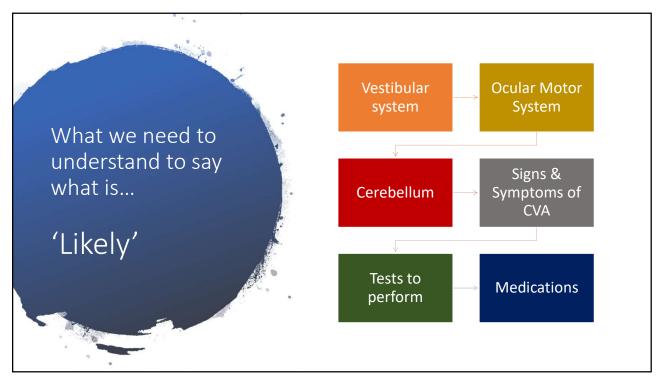


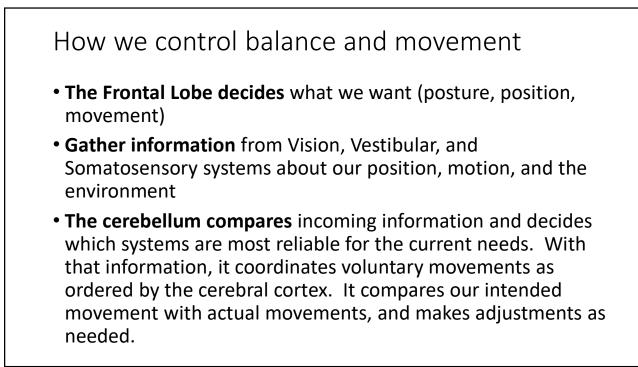
Our Job

When examining a patient with a history of falls, dysequilibrium, or dizziness, our job is to:

- 1. Examine each system contributing to balance
- 2. Assist in ruling out central pathology
- 3. Refer to other medical professionals as needed
- 4. Reduce the likelihood of falls by addressing systems we can affect, recommending assistive devices as needed, and referring to other professionals to address what we can't




Statistics – Dizziness		
Торіс	Statistic/Quote	Source
Vestibular	"From 2001 through 2004, 35.4% of US adults aged 40 years and older (69 million Americans) had vestibular dysfunction."	Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders of balance and vestibular function in US adults. Arch Intern Med. 2009;169(10):938-944.
Dizziness	The prevalence of vertigo and dizziness in people aged more than 60 years reaches 30%, while rising to 50% beyond 85 years	 JonssonR, SixtE,LandahlS, Rosenhall U. Prevalence of dizziness and vertigo in an urban elderly population. J Vestib Res (2004)14:47–52. BarinK, Dodson EE. Dizziness in the elderly. Otolaryngol Clin North Am (2011) 44:437– 54.doi:10.1016/j.otc.2011.01.013
Dizziness	"U.S. doctors reported 5,417,000 patient visits in 1991 because of dizziness or vertigo."	Centers for Disease Control and Prevention. Vital and health statistics, national ambulatory medical care survey: 1991 summary. Washington, DC: National Center for Health Statistics, Public Health Service, US Dept of Health and Human Services; 1994. DHHS publication PHS 94-1777.


Statistics – Dizziness		
Торіс	Statistic/Quote	Source
Dizziness	"Disorders of the vestibular system are responsible for 40%-50% of dizziness in patient referred to ENT and Primary Care clinics."	Whitiney S, Alrwaily M. Vestibular Rehabilitation of Older Adults with Dizziness. Otolaryngol Clin North Am. 2011;44:473-96.
BPPV	The most common vestibular disorder is BPPV (1/3 of vestibular diagnosis)	Von Brevern M, 2007; Delminski J, 2010

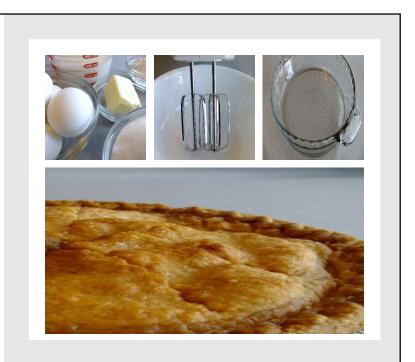
Things we know for certain...

Ingredients:

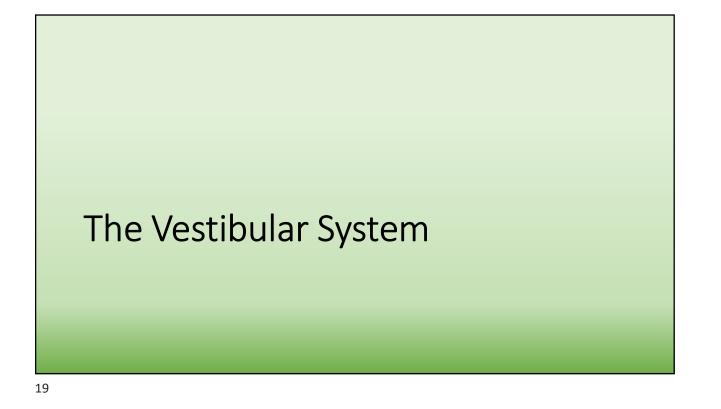
- Oculomotor Exam
- Vestibular Exam
- Somatosensory Exam

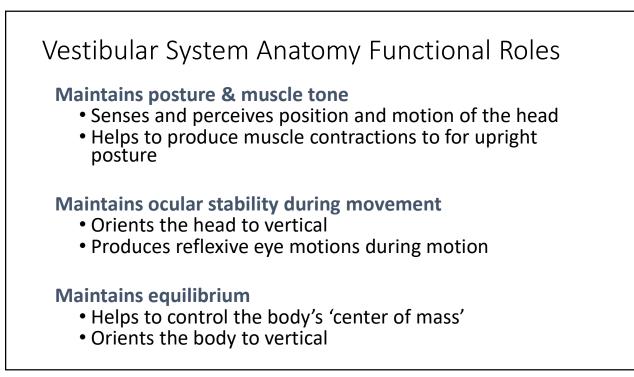
Mixer:

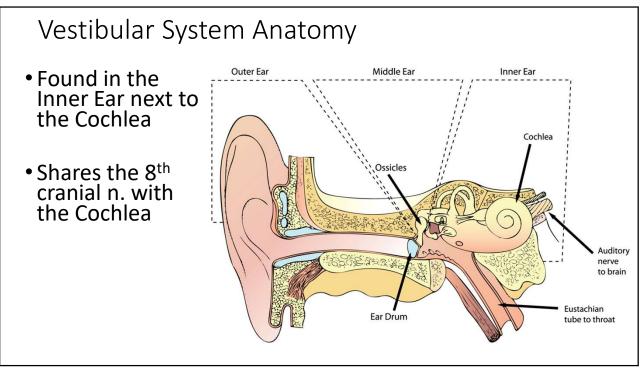
Cerebellum

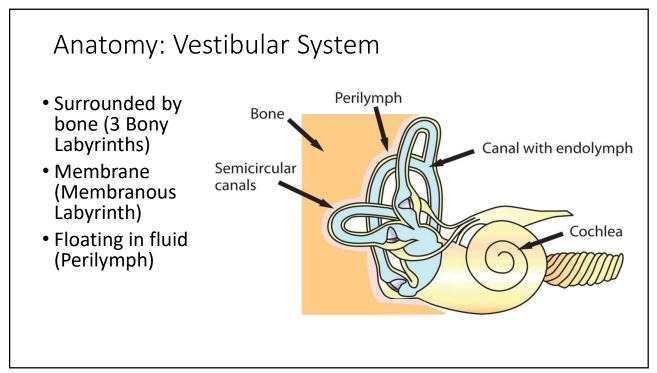

Pie Pan:

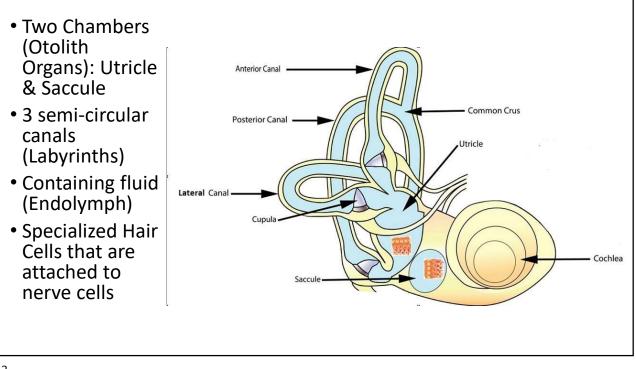
- Musculoskeletal System
- C1-C2 Stability

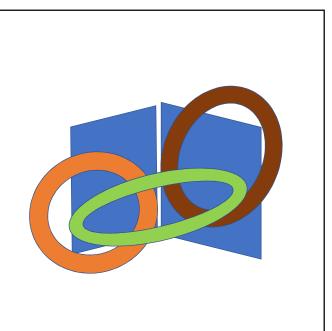

Taste Test:

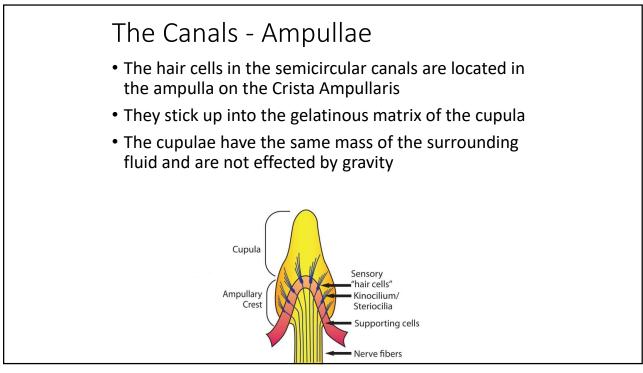

Examination of Function

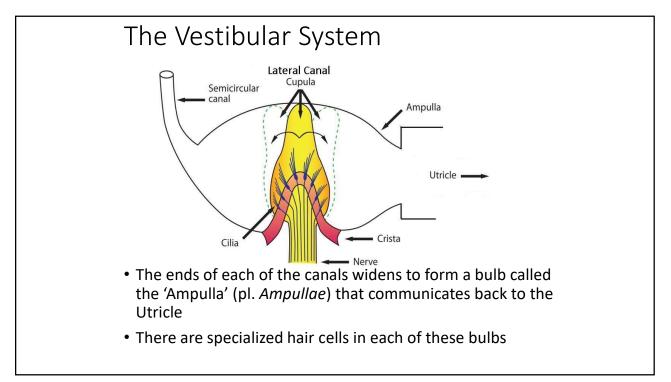

17

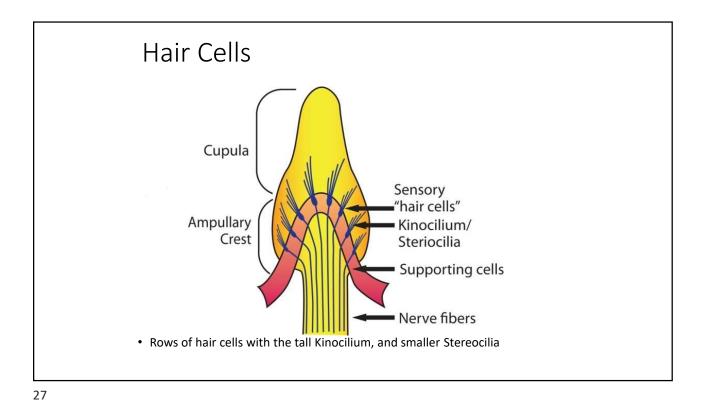


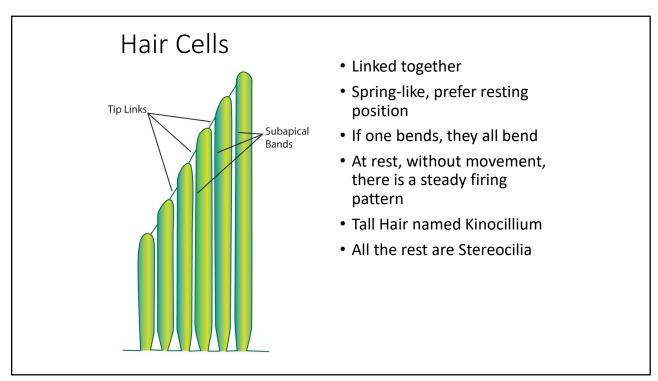

Useful Terminology Nystagmus refers to involuntary rhythmic movements of the eyes. Many Types: Jerk Nystagmus – Movements alternate between a slow component and a fast corrective component (jerk) in the opposite direction Pendular Nystagmus – Oscillations are roughly equal in rate in both directions

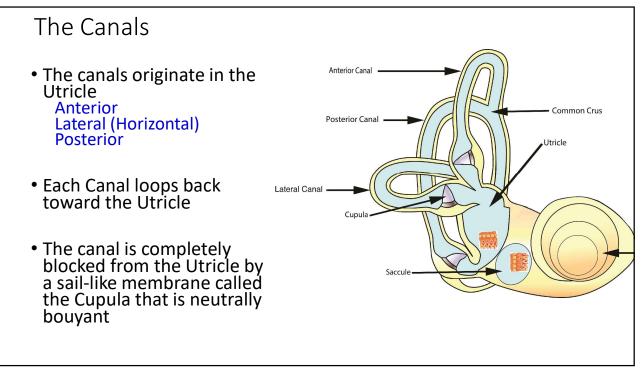


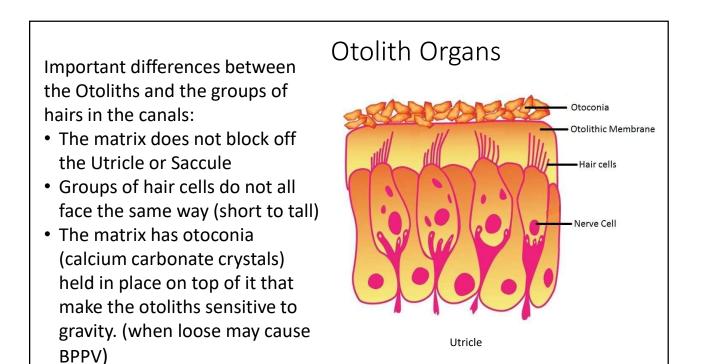

Three semi-circular canals (which originate in the Utricle) named for their orientations: Anterior Lateral (Horizontal) Posterior

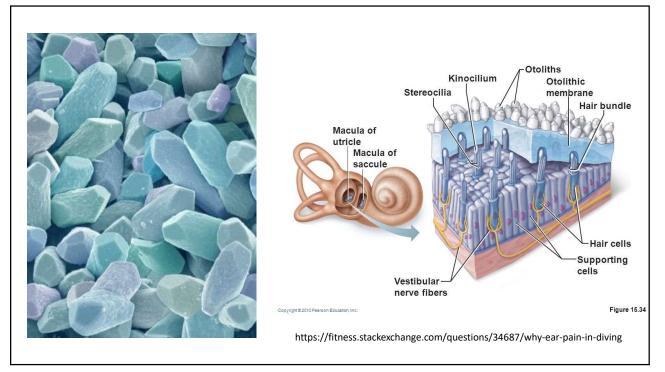

Oriented 90° to each other (like the corner of a room)

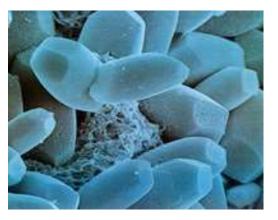

The anterior portion of the Lateral Canals are pitched up 30 degrees from horizontal


Anterior Canal is superior to (cephalad) to the other canals





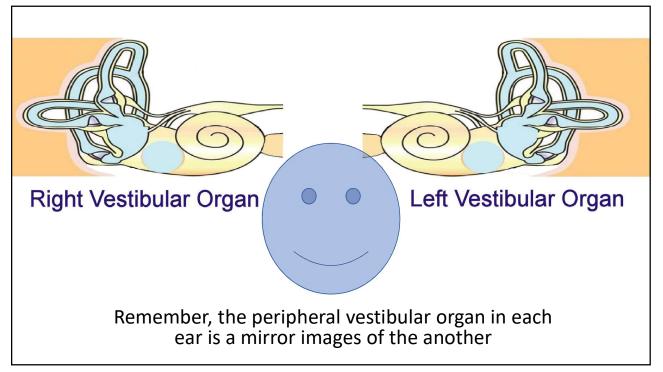


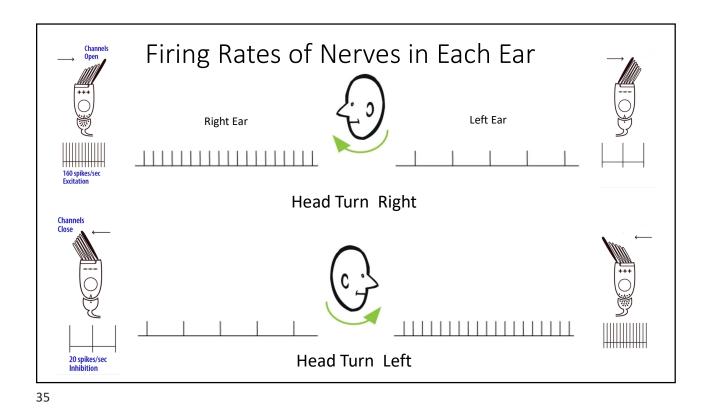


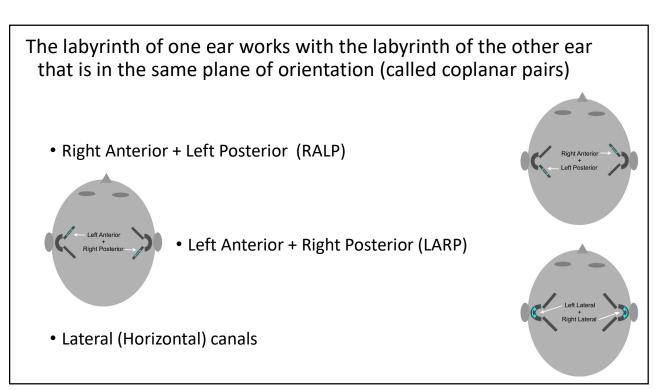
- On top of the Macula rests a gelatinous matrix called the 'Otolithic Membrane'
- Hair cells (Kinocillia and Stereocillia) project from the supporting nerve cells into the Otolithic membrane
- Small Calcium Carbonate crystals called "Otoconia" are glued on top of the membrane, and make the hair cells sensitive to gravity

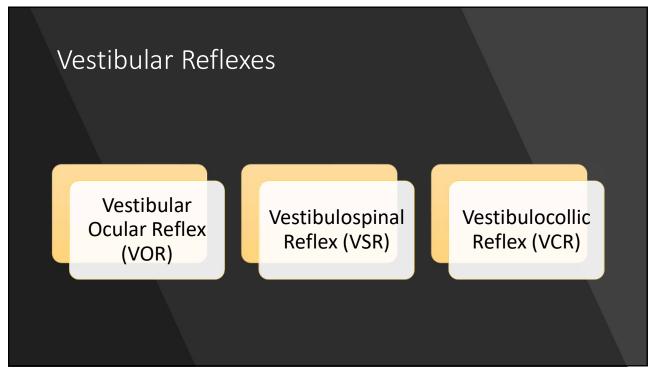
The Otolith Organs

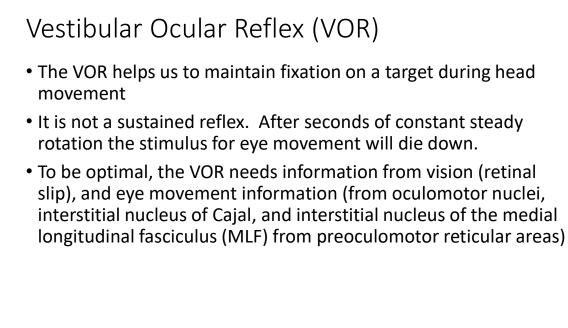
http://www.med.umn.edu/ent/clinics/otologyneurotology/treatment/be nignvertigo/home.html 28 Sept., 2008.

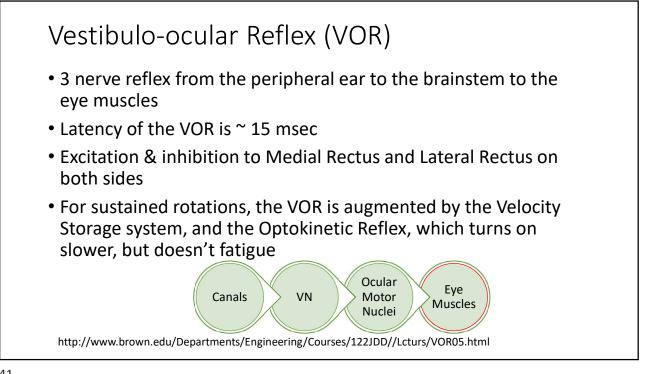

Anatomy: Otolith Organs



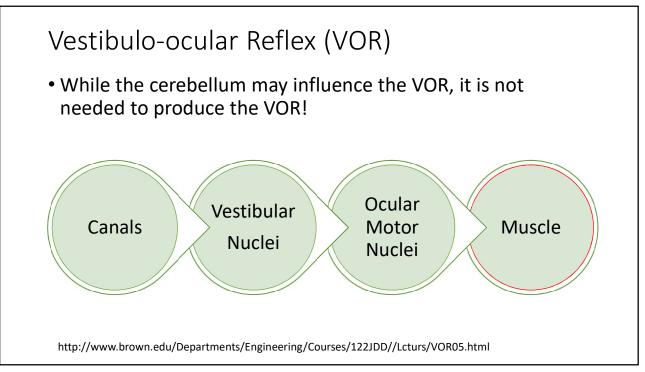

• Utricle: Detects horizontal motions such as accelerating or decelerating in a car or roller coaster

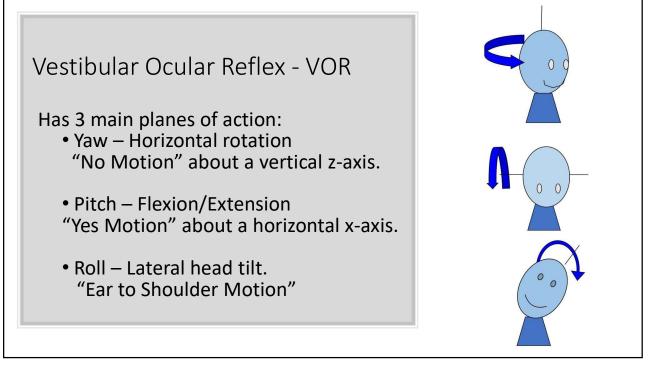

• Saccule: Detects vertical motions, such as moving up or down in an elevator





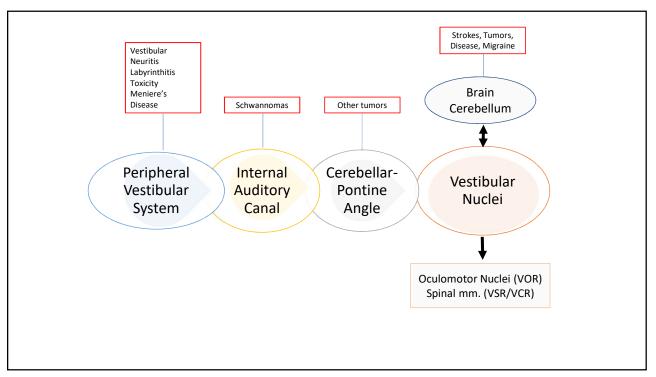
The Vestibular System Interpreting the firing rates • The brain interprets 'movement' when there is a difference between firing rates




Vestibular Reflex	Purpose
	Maintains gaze stability during head motion
VOR	Vestibular canals work between head frequencies of 0.5 Hz and 5.0 Hz (Best between 1.0 Hz and 5.0 Hz) Most head motions are between 0.5 Hz and 4 Hz
	VOR Eye motions: 250°-300°/sec 1 Hz = 360°/sec

ACTIVITY:
Choose a letter on this slide, shake your head "no" as quickly as you can, and keep the chosen letter in focus
Repeat the activity, only shaking your head "yes"
The VOR allows you to accomplish this task

ACTIVITY:


Hold a piece of paper with a number or letter, and move it quickly back and forth (left – right) in front of your eyes
This uses the 'Smooth Pursuit' system

Which is easier to see?

Vestibular Reflex	Purpose
	To Stabilize the body
VSR	Helps mediate eye movements and also muscle tone
	Increases extensor tone in the limbs on side of stimulation, and flexor tone on contralateral side of the body

Vestibular Reflex	Purpose
VCR	Stabilizes the head by acting on neck muscles
0 0	Reflex head movements counters movement sensed by vestibular system

Vestibular Problems

Damage - 1 Ear Unilateral Vestibular Loss

Inflammations:

- Vestibular Neuritis
- Labyrinthitis

Physical Damage:

- Dehiscence
- Fistula
- Concussion
- Post-surgery

Tumors:

- Schwannoma (Neuroma)
- Cerebellar-Pontine Angle

49

Damage - 1 Ear Unilateral Vestibular Loss	Symptoms of Unilateral Vestibular Loss (UVL)
	Acute Symptoms:
Inflammations:	• Spontaneous (Resting) Nystagmus that increases with gaze
Vestibular Neuritis	away from the affected ear
Labyrinthitis	 Dizziness and nausea that is worse with movement
	May vomit
Physical Damage:	 Dysequilibrium makes ambulation difficult
Dehiscence	
• Fistula	Sub-acute Symptoms:
Concussion	 May only have gaze-evoked nystagmus near ocular end-
 Post-surgery 	range, or with vision removed (IR goggles or Frenzel lenses)
	 Feel OK while sitting still, but dizzy/nauseous if moving
(Less Commonly)	Can walk with certainty only without turning head
Tumors:	
• Schwannoma (Neuroma)	Chronic Symptoms:
Cerebellar-Pontine Angle	 May not complain if dizziness
	May report dizziness/dysequilibrium while turning quickly

Damage – Both Ears Bilateral Vestibular Loss

Toxicity:

- Medications
- (Aminoglycosides)
- Cisplatin (chemo.)
- Heavy Metals

Central Etiologies:

- Strokes
- Degenerative Neuro
 Diseases

One or Both Ears Abnormal Stimulation

• BPPV

BPPV is usually seen in only one ear at a time, but may be bilateral after trauma

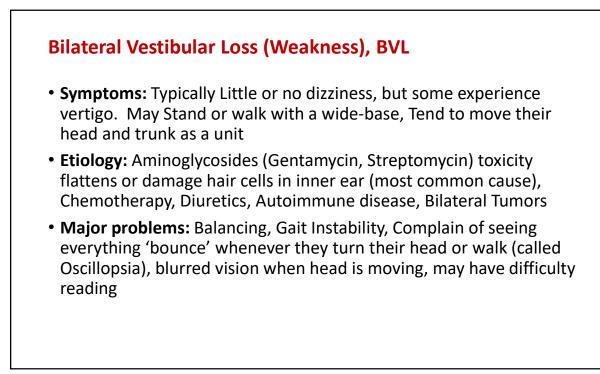
Damage – Both Ears Bilateral Vestibular Loss

Toxicity:

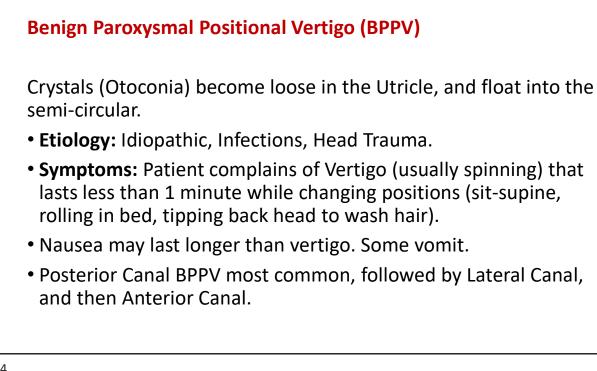
- Medications
- Cisplatin (chemotherapy)
- Heavy Metals

Central Etiologies:

- Strokes
- Degenerative Neuro Diseases


Symptoms of Bilateral Vestibular Loss (BVL)

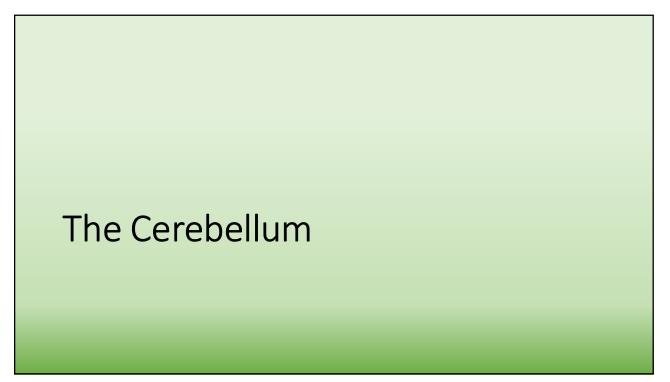
Acutely:

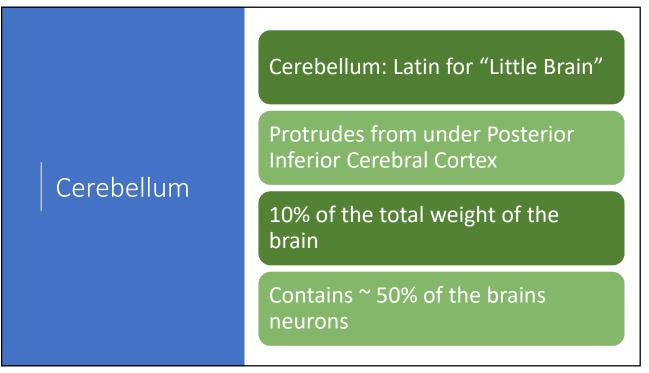

- Extremely dizzy, nauseous and off-balance
- Usually unable to ambulate, and may have difficulty maintaining sitting balance
- No nystagmus are observed
- Reports Oscillopsia with head movement

Chronic:


- · Report oscillopsia with head movement
- Typically not dizzy
- Major dysequilibrium
- · Ambulates with an assistive device only
- Ambulation is slow and without head turns

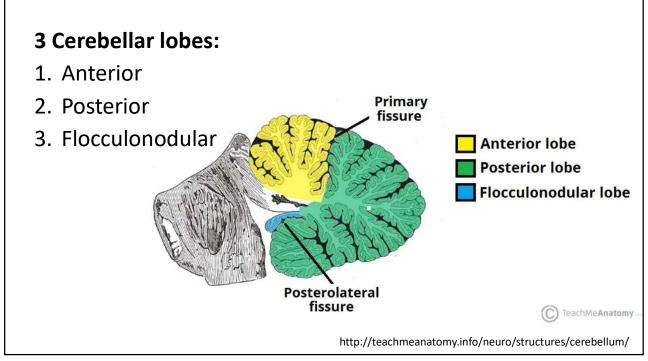
One or Both Ears Abnormal Stimulation	Symptoms of Benign Paroxysmal Positional Vertigo (BPPV)
• BPPV	Acutely/Chronic:
BPPV is usually seen in only one ear at a time, but may be bilateral after trauma	 The patient experiences vertigo during position changes of the head (typically pitches), that are usually noticed when: Rolling in bed, Getting in/out of bed Bending over to pick up objects
	 Bending over to tie shoes
	 Washing their hair while showering
	No vertigo is noticed while sitting still, however
	there may be nausea from previous head motions

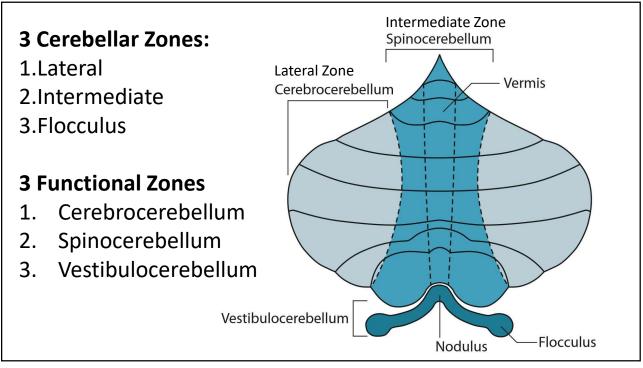

Conditions that Mimic BPPV			
Causes	Symptoms		
Central Positional Vertigo with Nystagmus (Migraine related)	Vertigo & Down-beating Nystagmus, No Torsion & Non-fatiguing		
Central Positional Nystagmus without Vertigo	Unidirectional Nystagmus: Either Vertical, Horizontal, OR Torsional		
Cerebellar Tumor, or Hemorrhage dorsolateral to the 4 th ventricle	Vertigo & Down-beating Nystagmus, No Torsion & Non-fatiguing		
Vertebral Artery Compression	Vertigo and Nystagmus		
 Pressure Induced Disorders: Perilymphatic Fistula Superior Canal Dehiscence Hypermobile Stapes 	Positional Vertigo & Nystagmus, but usually associated with Hearing Loss		
Sensory Mismatch	Vague dizziness during head extension or when rotated to an extreme position		


Medication Class	Examples
Anticonvulsants	Phenytoin, carbamazepine, pregabalin
Antidepressants	Tricyclic antidepressants (e.g., amitriptyline, nortriptyline)
Anxiolytics	Benzodiazepines (e.g. Alprazolam, Diazepam, Lorazepam)
Sedatives	Barbiturates Benzodiazepines Hyptonitic Axiolytics (Estazolam (ProSom), Temazepam (Restoril), Triazolam (Halcion))
Strong Analgesics	Narcotics, Opioids, Morphine
Muscle Relaxants	Baclofen, Carisoprodol (Soma), Chlorzoxazone (Parafon Forte DSC), Cyclobenzaprine (Flexeril)
Antiarrhythmic agents	Amiodarone, Dofetilide, Propafenone, Sotalol

Mechanism	Class of Drug	Sample Drug
	Aminoglycosides	Gentamycin
		Streptomycin
	Glycopeptide antibiotics	Vancomycin
	Alkylating agents	Cisplatin
Ototoxicity	Loop diuretics	Furosemide
	(reversible)	Ethacrynic Acid
	NSAIDS	Aspirin
	(reversible)	Ibuprofen
	Antimalarial drugs	Quinine
	(reversible)	Quinidine

Medications causing Falls
Medication side-effects such as sedation may slow reaction times needed to maintain balance. There is a statistical association between the following drugs and falls:
Benzodiazepines (Diazepam, Lorazepam, Clonazepam)
Antidepressants (Tricyclic and Serotonin-Reuptake Inhibitors)
Symptoms may be present with high serum levels, or when permanent damage has been caused by the medications.




Cerebellum	Symptoms of Injury
Important for being able to perform everyday voluntary tasks (e.g. walking, writing).	 Loss of balance Loss of coordinating fine movements Nystagmus
Essential to balance and upright posture.	 Tremors Inability to walk Slurred speech Low Muscle Tone (floppy arms/legs)

Cerebellum			
Receives Information From:		Sends Output To:	Function:
1. 2.	Spinal cord Cerebral Cortex	The Brainstem	 Adjusts motor responses comparing planed movements to sensory data – adjusting movements as needed
3.	Vestibular nuclei		 Modulates force and range of motion of movements Involved in motor learning

3 Cerebellar Functional Areas:

1. Cerebrocerebellum

Comprised: The lateral hemispheres. *Job:* Planning movements and motor learning, coordination of muscle activation, and is important to visually guided movements.

Receives: Input from cerebral cortex and pontine nuclei

- 2. Spinocerebellum
- 3. Vestibulocerebellum

http://teachmeanatomy.info/neuro/structures/cerebellum/

67

1. Cerebrocerebellar

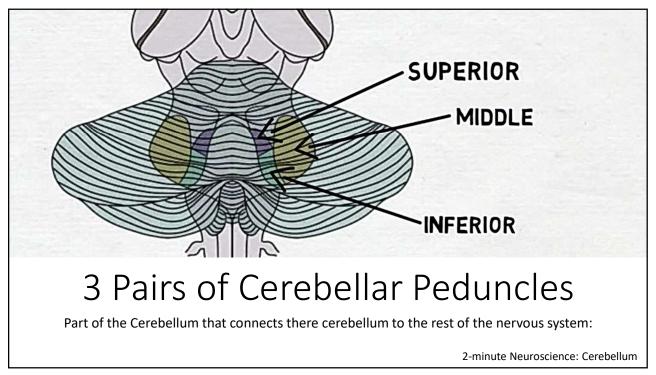
2. Spinocerebellum

Compromised: The intermediate zone

Job: Regulating body movements - error correction

Receives: limb position and touch/pressure sensations from the spinal cord to compare where limb is in space and where it should be. It modifies motor signals to correct errors in movement. **Vermis: Runs along the middle. It is involved in**

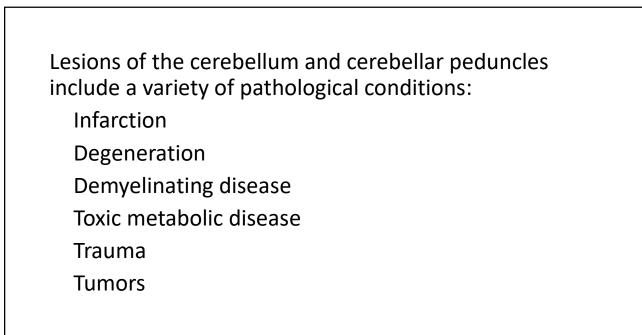
posture, limb and eye movements 3. Vestibulocerebellum


http://teachmeanatomy.info/neuro/structures/cerebellum/

3. Vestibulocerebellum:

Comprised: Flocculonodular lobe and Lingulus Job: Controlling balance, posture, and ocular reflexes (mainly fixation on a target) Receives: Input from the vestibular system

http://teachmeanatomy.info/neuro/structures/cerebellum/



Peduncles

- Latin for "Little foot"
- Attach to the Pons
- Afferent nerve fibers outnumber Efferent nerve fibers 40:1
- Most afferent tracks enter the cerebellum via the inferior and middle peduncles, with a few entering the superior peduncle.
- The Primary efferent peduncle is the Superior peduncle

Moritani T, Hiwatashi A, Want H, Numaguchi Y, Ketonen L, et al. Anatomy and Pathology of the Cerebellar Peduncle. University of Rochester Medical Center. Rochester, NY.

71

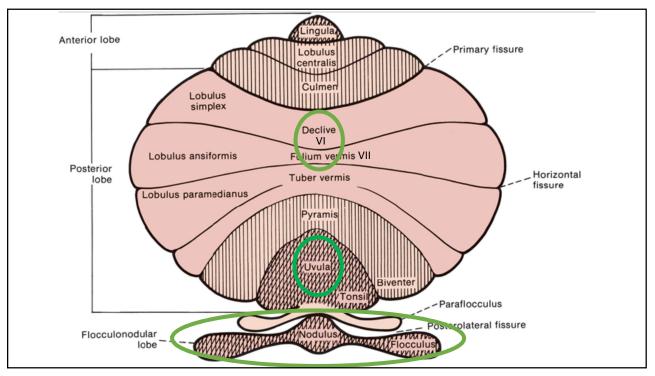
Moritani T, Hiwatashi A, Want H, Numaguchi Y, Ketonen L, et al. Anatomy and Pathology of the Cerebellar Peduncle. University of Rochester Medical Center. Rochester, NY.

Peduncles

Lesions of the cerebellar peduncles results in clinical symptoms ranging from vertigo or vomiting as the only symptoms to facial palsy, ataxia, nystagmus, diplopia, dysphagia, dysarthria, deafness, contralateral motor weakness, trigeminal sensory loss, dysmetria of the limb, loss of pain and temperature sensation, Horner's syndrome, and Locked-in syndrome.

Moritani T, Hiwatashi A, Want H, Numaguchi Y, Ketonen L, et al. Anatomy and Pathology of the Cerebellar Peduncle. University of Rochester Medical Center. Rochester, NY.

73


Lesions of the lateral zone result in errors in the direction, force, speed, and amplitude of movements. Deficits you may see: Dysmetria (past-pointing) Dysdiadochokinesia: Awkward rapid-alternating movements Rebound phenomena: Lack of force control

Intention Tremor: Tremor noted during movement

Moritani T, Hiwatashi A, Want H, Numaguchi Y, Ketonen L, et al. Anatomy and Pathology of the Cerebellar Peduncle. University of Rochester Medical Center. Rochester, NY.

3 Regions of the cerebellum involved in all classes of eye movements

- 1. The oculomotor vermis (lobule VI and VII) and fastigial nuclei
- 2. The uvula (Inferior portion of the vermis) and nodulus
- 3. The flocculus and paraflocculus.

Functional Differences

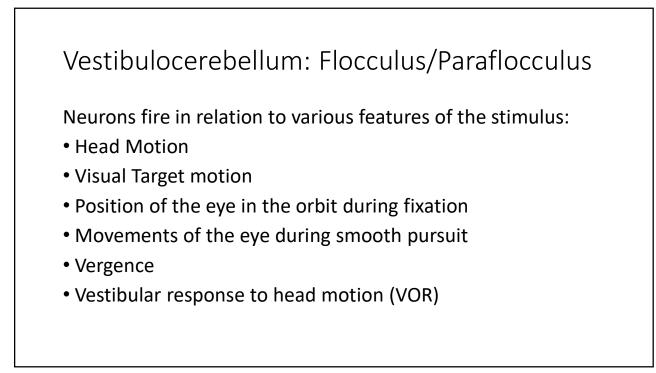
Flocculus/Paraflocculus

More concerned with relatively immediate and fast acting ocular motor functions that relate to the needs of holding images steady on the fovea. E.g. Smooth pursuit, VOR, and steady gaze following saccades.

Nodulus and Ventral Uvula

More concerned with generating eye movements that determine the duration and axis of eye rotation in response to low-frequency vestibular stimuli, and to determine the orientation of images on the entire retina.

77


Cerebellar disease result in neuro-opthalmic abnormalities that most prominently affect ocular movements

3 Principle cerebellar syndromes:

- 1. Floccular-parafloccular syndrome,
- 2. Ventral uvula-nodular syndrome,
- 3. Oculo-motor vermis-caudal fastigial nuclei syndromes

Zee, D. S., & Walker, M. (2010). Cerebellum and Oculomotor Control. In *Encyclopedia of Neuroscience* (pp. 729-736). Elsevier Ltd. https://doi.org/10.1016/B978-008045046-9.01090-1

Flocculus/Paraflocculus Syndrome

1st Cardinal Sign of Lesion - Pursuit

With lesions of the flocculus/Paraflocculus smooth tracking is impaired either when the head is still (pursuit) or while moving (VOR cancellation).

Complete lesions of the flocculus/Paraflocculus lead to a steady-state gain (eye velocity/target velocity) of pursuit

There is considerable recovery of pursuit function, even with relatively complete lesions.

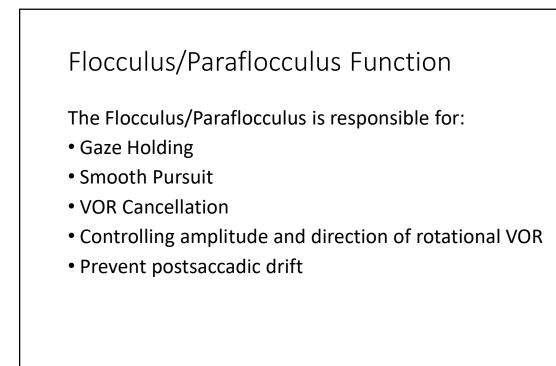
81

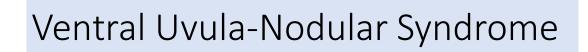
2nd Cardinal Sign of Lesion - Gaze Holding

Lesions of the flocculus/Paraflocculus cause impaired gaze holding. After eccentric horizontal eye movements, the eyes drift centripetally (toward the center). 3rd Cardinal Sign of Lesion – Spontaneous Nystagmus

Downbeat nystagmus, in which the eyes drift up slowly (slow phase) and are brought back to the fixation of the target by a corrective downward saccade (quick phase), is a third cardinal sign of Flocculus/Paraflocculus lesion.

Postsaccadic Drift

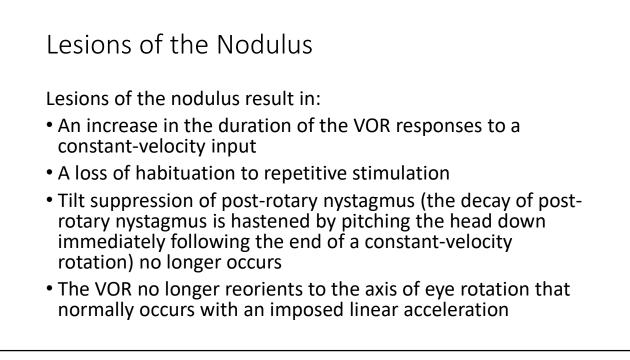

Another feature of the floccular/parafloccular syndrome is a brief drift of the eyes, lasting several hundred milliseconds following a saccade.

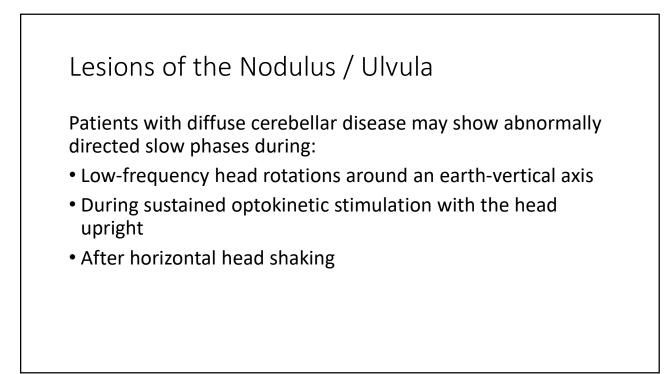

Flocculus/Paraflocculus and VOR

The flocculus and Paraflocculus are not critical for the VOR response. The amplitude of the VOR may be normal, increased, or decreased.

The VOR may be misdirected: The axes of the eye rotation and head rotation become misaligned. During head rotation, patients with diffuse cerebellar lesions may show a dynamic upward bias so that the eyes move up and horizontally.

There are also inappropriate torsional components and the responses in the eyes are dysconjugate with more torsion in one eye, and more vertical rotation in the other.

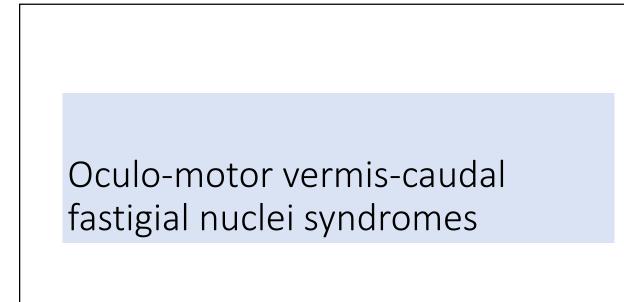




Vestibulocerebellum: Nodulus/Ventral Uvula

The nodulus and adjacent ventral uvula are the most caudal aspects of the cerebellar vermis, and they act upon the 'lowfrequency' components of the VOR via projections to a 'velocity storage' mechanism within the vestibular nuclei.

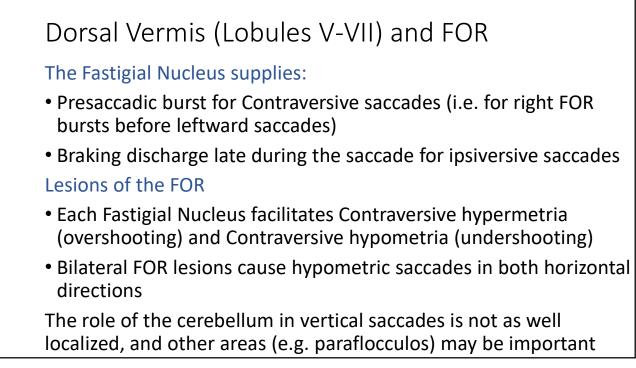
During constant-velocity head rotations, the velocity-storage mechanism extends the duration of the VOR response and slows the decay of nystagmus during constant-velocity head rotations in the dark. It also improves the performance of the VOR at low frequencies of head rotation.



Lesions of the Nodulus / Ulvula

Periodic alternating nystagmus (PAN) is a horizontal jerk nystagmus that may change direction every few minutes and may appear after lesions of the nodulus.

Lesions of the nodulus and/or uvula may also alter smooth pursuit and optokinetic nystagmus, although their exact contributions to these visual-following reflexes is unclear.

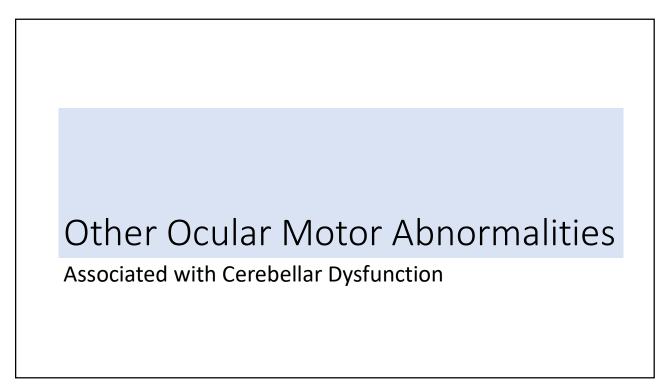

Dorsal Cerebellar Vermis (Lobules V-VII) and Posterior Fastigial Nucleus

The Dorsal Cerebellar Vermis (also called the oculomotor vermis (OMV)) and the underlying posterior fastigial nucleus (also called the fastigial oculomotor region (FOR)) are Important in the control of saccades and pursuit.

Saccades:

Lesions of the OMV lead to changes in:

- Accuracy
- Latency
- Dynamic properties
- Adaptation



Cerebellum's Influence on the Brain Stem It is proposed that: The early influence of the FOR on the initiation of saccades could be mediated through the excitatory burst neurons within the brain step reticular formation The neurons could act to brake the saccade by inhibiting the abducens nucleus

Multiple Areas...

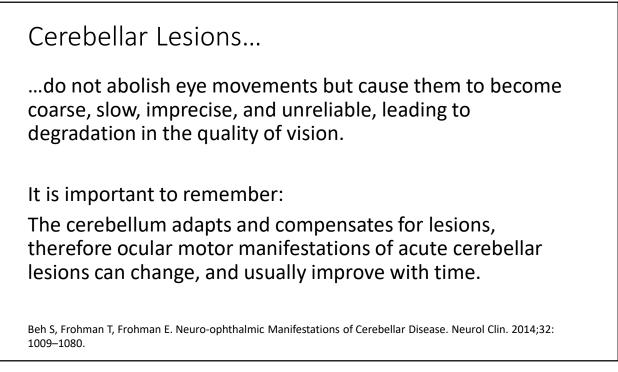
- There are multiple areas in the cerebellum that are related to pursuit and saccades:
- Uvula and Interposed nucleus, the flocculus/Paraflocculus, and the FOR/OMV complexes all have neurons that discharge with pursuit movements.
- Lesions in the uvula and within the lateral cerebellar hemispheres also have been associated with pursuit deficits.
- The OMV/FOR is concerned with the initiation and termination of the preprogrammed, open-loop, initial portion of pursuit, while the Flocculus/paraflocculus is more concerned with pursuit during sustained tracking.

Skew deviations:

Have also been noted with cerebellar dysfunction that cannot be attributed to oculomotor or trochlear nerve palsy, in which the abducting eye is higher.

Esotropia:

Cerebellar abnormalities may cause esotropia, which is usually greater at distance.

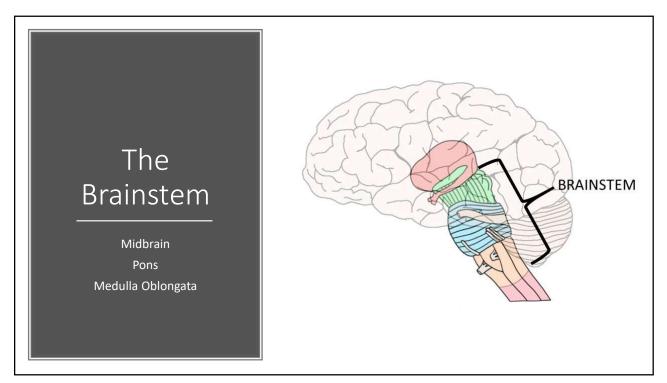

Reflexes:

Diffuse cerebellar atrophy may produce dysconjugate vestibular responses, or dysconjugate saccades that are not yoked.

99

Cerebellar Syndrome	Features
Flocculus-Paraflocculus Syndrome	 Saccadic smooth pursuit and VOR suppression Impaired gaze holding: Gaze-evoked nystagmus, Rebound nystagmus Downbeat nystagmus Impaired VOR adaptation Impaired Optokinetic Reflex Post-saccadic drifts
Nodulus-Ventral Uvula Syndrome	 Impaired velocity storage: Prolonged post-rotary nystagmus Failure of tilt suppression of postrotary nystagmus Perverted head-shaking nystagmus Periodic alternating nystagmus Positional nystagmus

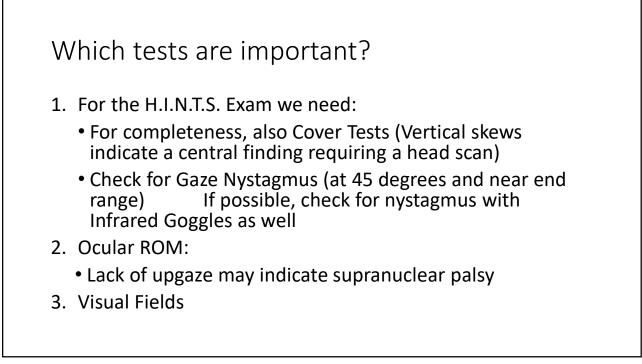
Cerebellar Syndrome	Features
Oculomotor Vermis-Caudal Fastigial Nucleus Syndrome: Dorsal vermis damage	 Bilateral hypometric saccades Saccadic smooth pursuit Impaired Optokinetic Reflex
Caudal fastigial nuclei damage	 Bilateral hypermetric saccades Saccadic smooth pursuit Impaired Optokinetic Reflex
Unilateral dorsal vermis dysfunction	 Ocular contrapulsion Saccadic contrapulsion: hypermetric contralateral and hypometric ipsilateral saccades Ipsiversive saccadic pursuit
Unilateral caudal fastigial nuclear dysfunction	 Ocular ipsipulsion Saccadic ipsipulsion: Hyopmetric contralateral and hypermetric ipsilateral saccades Contraversive saccadic pursuit
Beh S, Frohman T, Frohman E. Neuro-ophthalmic M	anifestations of Cerebellar Disease. Neurologic Clinics. 2014;32(4):1009-1080

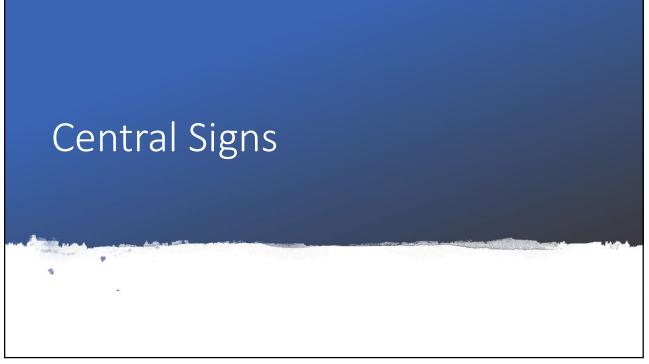


Cerebellar Lesions...

Can cause hypotonia.

While hypertonicity (too much muscle tone) is cause by lesions in the motor pathway, the cerebellum helps control tone to prepare for intended movements.

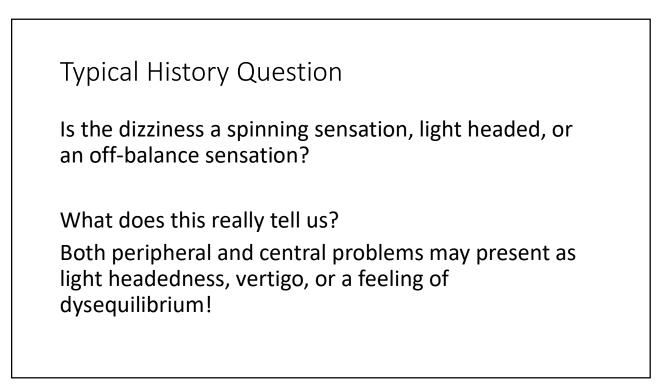

Too little tone (e.g. floppy arms/legs), or too much tone (difficulty moving the limb passively) are signs of a brain lesion.



Brainstem	Symptoms of Injury
Deals with alertness, arousal, breathing, heart rate, blood pressure, and relays information from peripheral nerves and spinal cord to the	 Sleep difficulties (Insomnia, Sleep apnea) Dizziness, vertigo, nausea Problems with balance and movement
upper parts of the brain.	 Decreased breathing capacity crucial for speech
Parts: Midbrain	 Difficulty perceiving and organizing the environment
Pons Medulla Oblongata	 Difficulty swallowing food and water
	 Locked-In Syndrome (Pons)

Brainstem (Mesencephalon)	Responsibilities
Midbrain	 Acts as a relay center for visual, auditory and motor system information. Regulates autonomic function (without conscious thought): digestion, heart rate, breathing rate
Pons	 Regulates breathing (amount of air breathed, breathing rate) Transmission of signals from cerebrum and cerebellum Involved in sensations of hearing, taste, and balance Regulates deep sleep CN: Oculomotor, Abducens, Trochlear, Vestibulocochlear
Medulla Oblongata	 Important to heart rate and blood pressure Responsible for reflexes: vomiting, sneezing, coughing Vestibular nuclei (Pontomedullary junction)

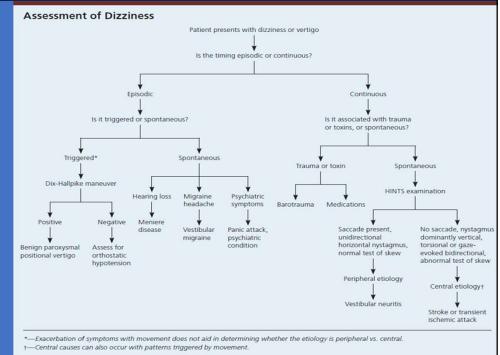
Ocular Motor Assement and the H.I.N.T.S. Exam


Unilateral Gaze Nystagmus when a Head Impulse Test is negativeOnly see vertical or rotary nystagmusVertical corrective saccades during a Cover TestPursuit is saccadic (prior to~ age 60)Spontaneous NystagmusUnilateral Gaze NystagmusOnly see vertical or rotary nystagmusVertical corrective saccades during a Cover TestPursuit is saccadic (prior to~ age 60)Spontaneous NystagmusImpulse Test is negativeOnly see vertical or nystagmusVertical corrective saccades during a Cover TestPursuit is saccadic (prior to~ age 60)Spontaneous Nystagmus	Central Sig	gns During	Ocular Exa	m	
	Gaze Nystagmus when a Head Impulse Test is	vertical or rotary	corrective saccades during a	saccadic (prior to ~	Nystagmus with ocular

Central Si	gns During	Ocular Exa	m	
Loss of Upward Gaze	Hypometric Saccades > 2 Saccades during saccades testing	Hypermetric Saccades Overshooting saccades during saccades testing	Direction – changing gaze nystagmus	Increased dizziness with fixation Or in light

Other Central Signs

Abnormal muscle tone Clonus Ataxic, uncoordinated movements

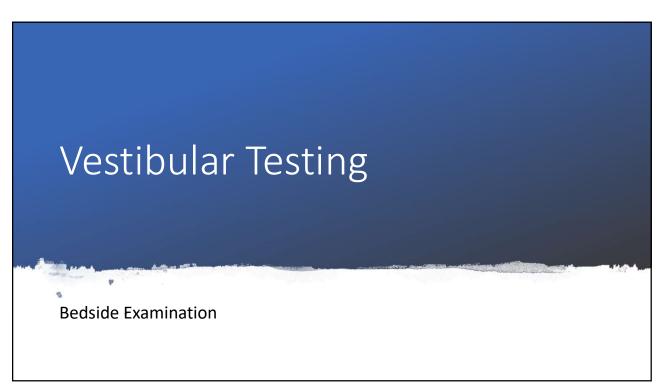


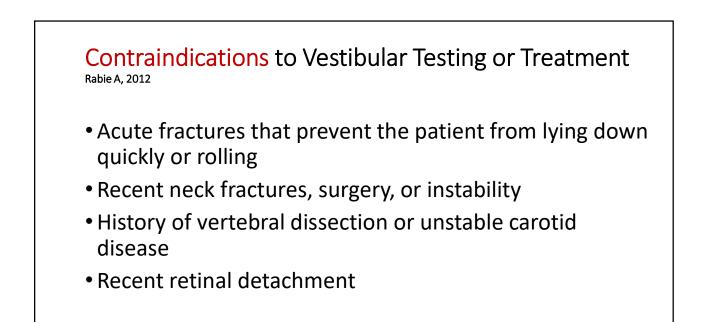
Better

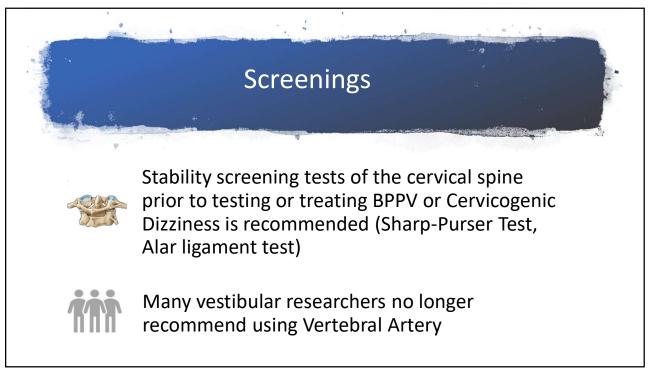
questions may be related to: Episodic vs. Continuous and

Triggered vs. Spontaneous

Muncie HL, Sirmans SM, James E. Dizziness: Approach to Evaluation and Management. Am Fam Phys. 2017; 95(3):154-162

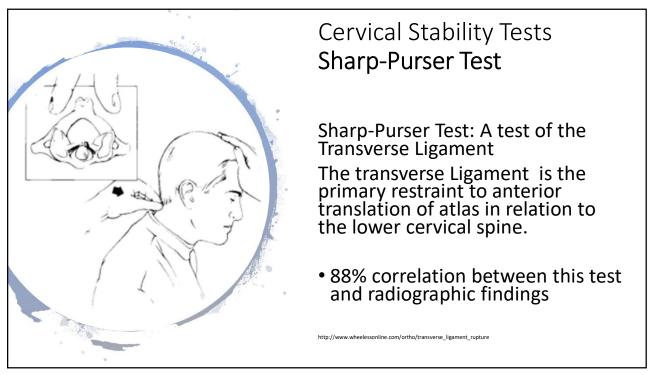

115

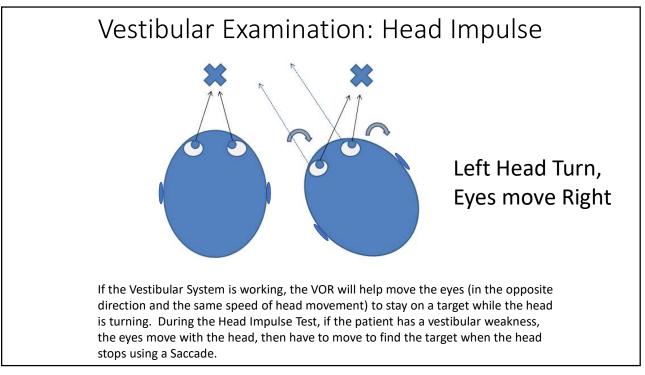

How do you assess dizziness?


- History
- Oculomotor Exam Fixation ROM Pursuits Saccades Nystagmus Vergence
- PerimetryVestibular Exam
- Head Impulse Test Positioning Tests (BPPV) **VOR-C is NOT a vestibular test**

- Cerebellar Screens
- Cervical Spine Screen
- Somatosensory: Touch and Proprioception
- Muscle Tone
- Standardized Balance Tests
- HINTS Protocol
- Orthostatic BP

Dizziness Destibular impairments are common after a concussion and may be adrama. Oto Neurotol. 2004; 25(2):135–138. Anguib MB, Madian Y, Refaat M, Mohsen O, El Tabah M, Abo-Setta A. Characterisation and objective monitoring of balance disorders following head trauma, using videonystagmography. J Laryngol Otol. 2012; 26(1):26–33. Destibular/Oculomotor impairments are reported by 50% of seline and postconcussion factors. Am J Sports Med. 2012; 40(10):2375–2384. Destibular/Oculomotor inscues are not always assessed in the ED

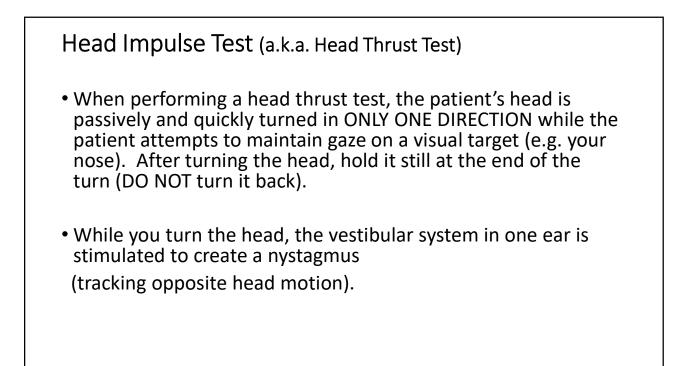


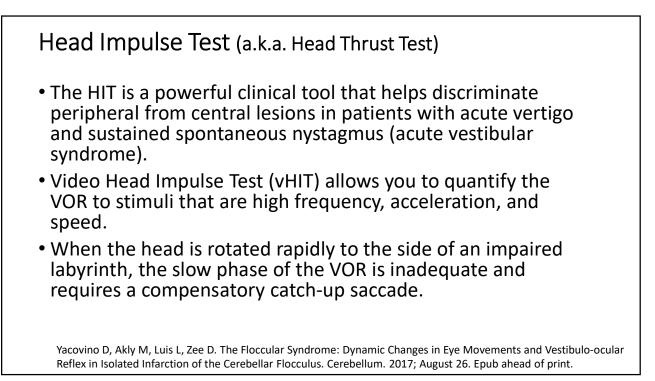


Craniovertebral Hypermobility Clinical Presentation:

- Patient can give history of flexion injury and has neck pain, occasionally w/ associated head injury
- Diffuse motor loss may occur if the pyramidal tract is affected
- May report a 'lump' in the throat, clumsy hands, numbress to hands/face, ankle clonus, difficulty walking, sphincter control loss
- Headache with sustained flexion
- Vertigo, nausea, tinnitus, and visual disturbances occur with occlusion of the vertebral artery associated with axial rotation of the atlas

Aspinall, W.; Clinical testing for the craniovertebral hypermobility syndrome. J Orthop Sports Phys Ther. 1990;12(2)47-54





Head Impulse (Head Thrust) Test

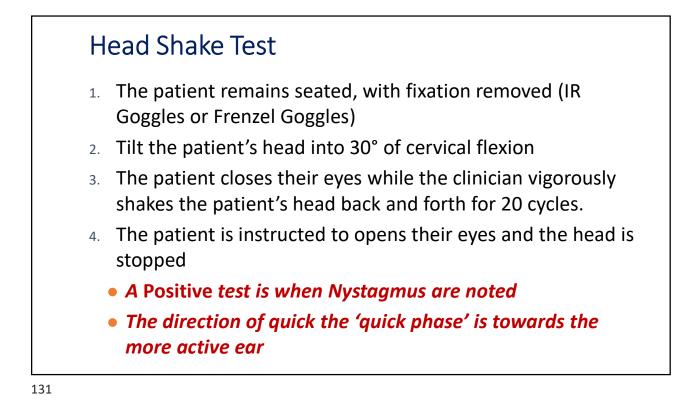
- Hold the patient's head in your hands (above the ears), pitched down 30 degrees
- Give them a visual target (your nose)
- Quickly turn the patient's head toward the ear to be tested at least 10 degrees
 - Does the patient maintain gaze on the target?
 - Observe any corrective saccades
 - Test is POSITIVE for direction of Head Thrust if a corrective saccade is seen. E.g.. for a 'Right Head Thrust' that is positive, a Right Unilateral Vestibular Hypofunction would be suspected (usually peripheral)
- Repeat with head turn to the other side

Head Impulse Test Specificity and Sensitivity from various studies: 100% Sensitivity for complete unilateral vestibular loss (UVL) UVL: sensitivity, 36%; average specificity, 97% specific Another study: average. sensitivity 46%; average specificity, 75% vHIT—specificity 95%, sensitivity 95% With 30 degrees of flexion and unpredictable timing: Sensitivity: 71% UVL, 84% BVL Sensitivity 20%

• Specificity 92%

129

Head Impulse Test


References:

Herdman S, Vestibular Rehabilitation. 4th ed. Philadelphia: FA Davis; 2014.

Beyon G., Baguley D.M.A. Clinical evaluation of head impulse testing. Clin Otolaryngol. 1998;23:117-122.

Weber K.P., Aw S.T., Todd M.J., McGarvie L.A., Curthoys I.S., Halmagyi G.M. Head impulse test in unilateral vestibular loss: vestibulo-oculoar reflex and catch-up saccades. Neurology. 2008;70(6):454-463.

Schubert M., Tusa R., Grine L., Herdman S. Optimizing the sensitivity of the Head Thrust Test for identifying vestibular hypofunction. Phys Ther. 2004;84(3)151-158.

Nystagmus Grading – Unidirectional beating

Grade I:

Gaze nystagmus in the direction of the healthy ear only

Grade II:

Nystagmus seen in the primary position Gaze nystagmus in the direction of the healthy ear

Grade III:

Nystagmus seen in the primary position Gaze nystagmus in the direction of the healthy ear Gaze nystagmus in the direction of the ear opposite of the healthy ear

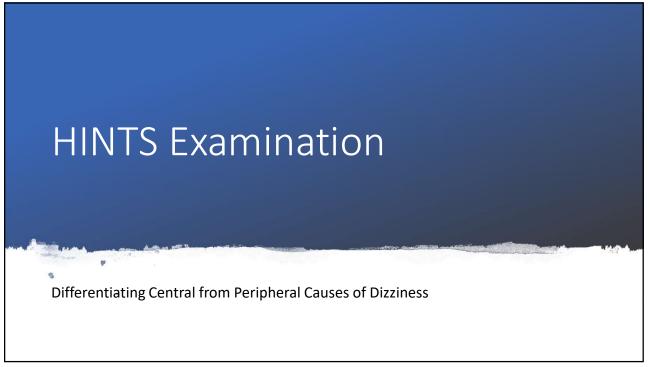
Vestibular Lab

Head Impulse Test Head Shake Test

135

Helpful Equipment

For Vestibular Assessement


	Туре	Advantages	Disadvantages
Fixation Removal	Optical	Less expensive (\$600 - \$1000)	Cannot record images More difficult to see the patient's eye(s)
	Video (IR Goggles)	 Available at multiple price points depending on your needs/software Can record/playback video 	 More expensive Requires a laptop or desktop computer
	differentia	the eyes with fixation remo al diagnosis, as well as to de pathy exists.	•
	Frenzel Go	oggles	
	The	re are 2 types: Video Frenze	el and Optical Frenzel
	Som	e Video Frenzel's are also c	alled Infrared Goggles

Fixation Removal Why remove fixation? Patients with peripheral vestibular dysfunction can suppress nystagmus while fixating. When fixation is removed, the nystagmus may appear. Observable nystagmus change over time with a peripheral vestibulopathy: Acutely – spontaneous nystagmus at rest Sub-acutely (1-2 weeks) – Nystagmus with gazes at 45 degrees or near end-range Sub-acutely (2+ weeks) – Nystagmus only observed with fixation removed Chronically (4 weeks +) – No observable nystagmus Patients with central findings have nystagmus while fixating, but they may disappear in darkness

- With the goggles on, dim the room lights to ensure no light is seen.
- Ask the patient to keep eyes open (allowing them to blink) and observe for spontaneous nystagmus.
- If you have a suppression light, turn it on and ask them to look at it. Did nystagmus subside or slow? If so, it is likely a peripheral issue.
- Ask the patient to look to the Left (observe), and Right (observe)
- Ask the patient to look up (observe), then Upper Left and Right Quadrants
- If you test BPPV, you may also use the goggles

H.I.N.T.S.

H.I. Head Impulse Test, N. Nystagmus, T. S. Tests of Skew

Using a tests of the ocular motor and vestibular systems, you can determine the likelihood of stroke.

Test for Stroke in Acute Vertigo	Estimated Sensitivity	Estimated Specificity
Brain CT ± contrast CTA	1-42%	98%
MRI with DWI, MRA ± contrast	80% (<24 h)	96%
HINTS Examination	99%	97%

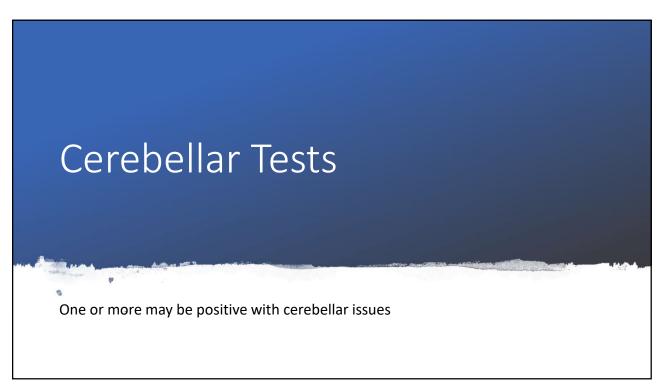
Hyden D, Akerlind B, Peebo M. Inner ear and facial nerve complications of acute otitis media with focus on bacteriology and virology. Acta Otolaryngol. 2006;126(5):460-466.

H.I.N.T.S.

H.I. Head Impulse Test, N. Nystagmus, T. S. Tests of Skew

The test is considered positive for stroke when:

- The Head Impulse Test is NEGATIVE, indicating the peripheral vestibular system is intact, **AND**...
- Horizontal direction-changing gaze nystagmus are observed (or Vertical nystagmus are observed)
- **OR**, Vertical Skew is noted on a cover-uncover test (a.k.a. alternate cover test)

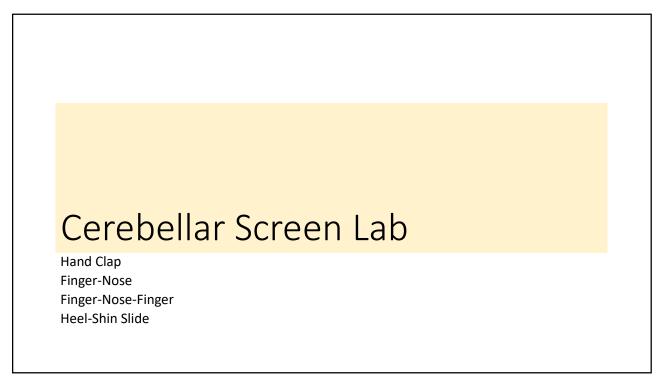

143

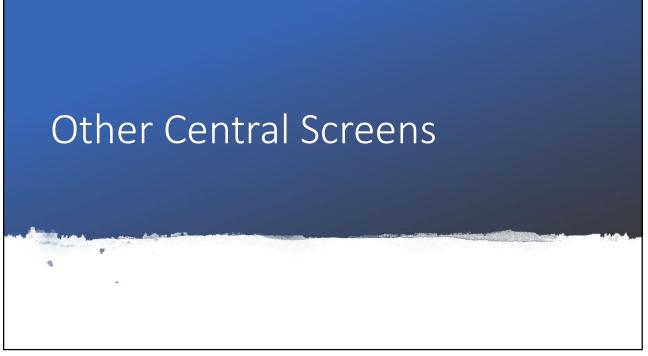
Negative Negative	Negative Positive	Positive* (1 ear) Negative
Negative	Positive	Negative
Positive	Positive	Negative
Stroke	Stroke	Peripheral
	Stroke	Stroke Stroke

* If the Head Impulse Test is positive for both ears, a CVA is possible

Perform a HINTS Exam

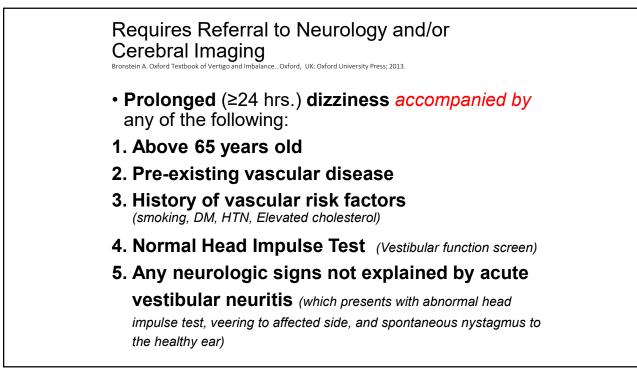
Type of Test	Upper Extremities	Lower Extremities
,	 Finger to Nose Finger-Nose-Finger * Arm fully extended to use as many joints as possible 	Patellar TappingHeel-Shin Slide
	Rapid-Alternating HandsHand Clapping	

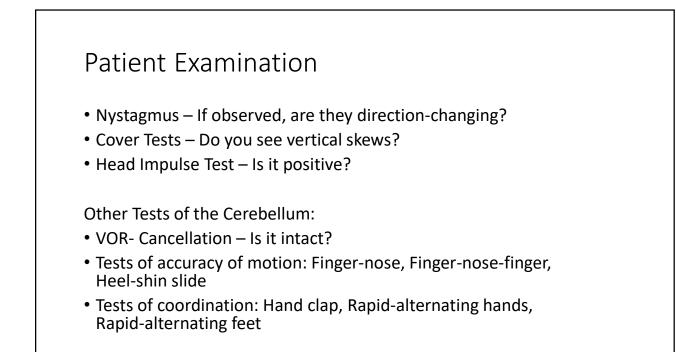

Type of Test	Instructions	Positive Finding
Scanning Speech	Instruct the patient to say something with a lot of consonants, such as ' <i>The</i> <i>American constitution</i> '	Unable to say clearly
Nystagmus	Instruct the patient to follow your finger into eccentric gaze	See fast-phase nystagmus >3 beats towards side of lesion *Must test vestibular system to rule out peripheral causes

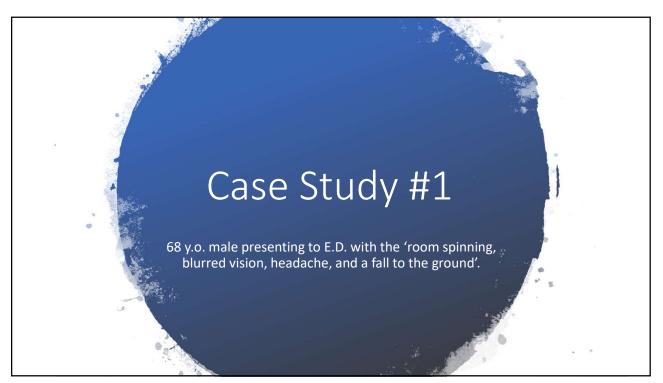

Cerebellar Screens		
Type of Test	Instructions	Positive Finding
Rebound Test	Place a protective arm across the patient. With your other hand instruct the patient to pull on your hand. Let go.	The patient is unable to stop his arm/hand from hitting himself
Pendular Knee Reflex	Strike the patellar tendon with a reflex hammer	The patients leg swings back and forth 3 or 4 times before stopping due to hypotonia

Cerebellar Screens

Type of Test	Instructions	Positive Finding
Balance	Patient is instructed to stand still (eyes open, then closed)	The patient demonstrates titubation (trunk sways) *The Romberg test is a test of proprioception – patient is still with eyes open but sways with eyes closed
Gait	Ask the patient to ambulate the hallway	Demonstrates a wide-based, ataxic gait. Falls toward the side of lesion.


Type of Test	Instructions	Positive Finding
VOR- Cancellation	Alternately move the patients head passively left and right. The examiner moves with the head, and stays in front of the patient. Instruct the patient to keep looking at the tip of the examiner's nose.	The examiner observes catch-up saccades during the motion.





Central Screens		
Type of Test	Description	Positive Findings
Clonus	With the patient relaxed, rapidly dorsiflex the ankle	Repetitive muscle contractions (ankle pumps two or more times)
Muscle Tone	Passively move arms and legs through their full range of motion	 You feel a catch It is difficult to move the limb (feels like pulling taffy)

68 y.o. ♂ presenting to E.D. with the 'room spinning, blurred vision, headache, and a fall to the ground'. Loss of consciousness once on the ground. Denies head trauma. Became diaphoretic, nauseous, and had vomiting. EMS called after 30 minutes. Symptoms are worse with movement. Denies chest pain and shortness of breath. Endorses recent sinus congestion.

PMH: Coronary artery disease, hypothyroidism, asthma, CKD III, HTN, HLD, PVD

Surgical Hx: CABG, Back Surgery

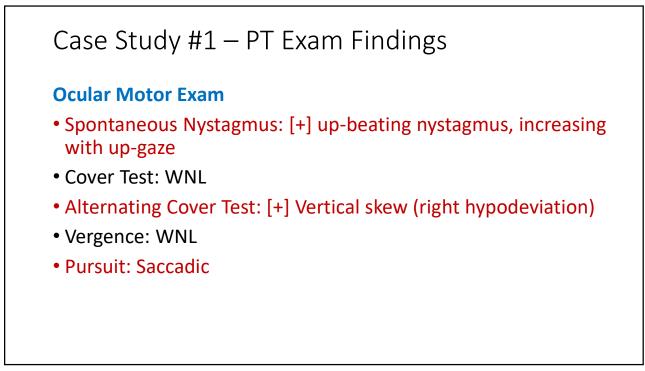
Social Hx: Married, Denies smoking, drinking alcohol, or use of illicit drugs

Admitted to the hospital, the attending Internal Medicine MD requested a 'Vestibular PT' examination

159

BP: 167/77, Pulse 77 Resp. 15, SpO2 100% **Orientation:** to person, place, and time

Emergency Dept. MD:

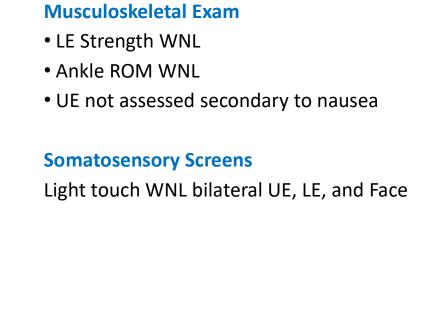

• Ordered a CT

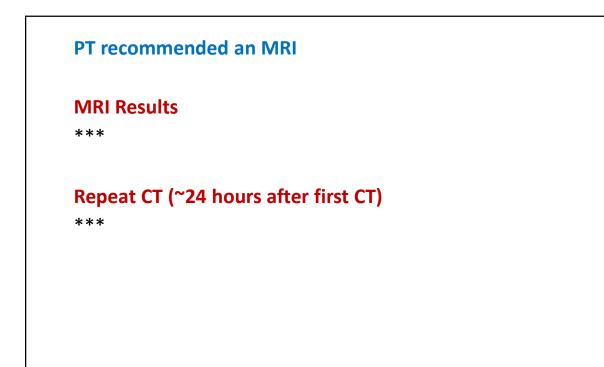
Mild chronic ischemic changes with no acute intracranial abnormality

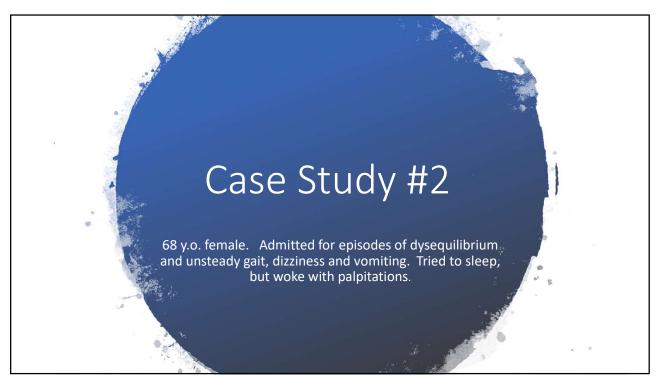
Mild bilateral ethmoid sinusitis

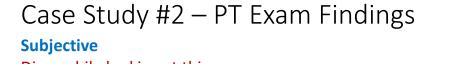
• Recommended MRI, PT

Hospitalist ordered a Vestibular Evaluation from PT




Vestibular Exam


- Head Impulse Test: [+] Bilaterally
- Dix-Hallpike: WNL
- Roll Test: [+] Apogeotropic with Right head roll, Left head roll was WNL


Cerebellar Screens

Hand Clap: WNL Finger-to-nose: WNL Finger-nose-finger: WNL Heel-Shin Slide: Abnormal LLE

Dizzy while looking at things

Ocular Motor Exam

- Fixation: Intact
- Spontaneous Nystagmus: None
- Eccentric Gaze: [+] Direction-Changing Nystagmus
- Cover Test: WNL
- Alternating Cover Test: [+] Left exophoria
- OKN: WNL
- Vergence: WNL
- Pursuit: Saccadic
- Saccades: Hypermetric vertically (horizontal WNL)
- Finger Counting Confrontation Test: WNL

Vestibular Exam

- Head Impulse Test: WNL
- Dix-Hallpike: Not tested
- Roll Test: Not tested

Cerebellar Screens

Hand Clap: WNL Finger-to-nose: WNL Finger-nose-finger: Dysmetric with Right UE Heel-Shin Slide: Abnormal RLE VOR-Cancellation: Impaired Tone: Ashworth 0 for all extremities (WNL)

167

Musculoskeletal Exam

- LE Strength WNL
- Ankle ROM WNL
- UE Strength WNL

Somatosensory Screens

Light touch WNL bilateral UE, LE, and Face Proprioception: WNL bilateral UE/LE

Gait

Slow gait speed, unsteady – reaching for walls. Loss of balance x 1 while turning right

PT recommended an MRI MRI Results *** CT No evidence of acute intracranial process

57 y.o. ♂ Complaining of vertigo, light headedness and unsteady gait.

PMH: HTN

Social Hx: Single and lives independently. There are no steps or stairs in his home.

BP: Supine 159/81, HR 70 Sitting 152/87, HR 104

Orientation: to person, place, and time

171

Case # 3 Exam Findings

Ocular Motor Exam

- Range of motion is WNL
- Fixation is impaired secondary to nystagmus
- Nytagmus: Grade III right-beating nystagmus
- Near Point of Convergence: WNL
- Cover Test: No vertical skews. Unable to assess alignment secondary to constant nystagmus

Hearing

Grossly intact bilaterally (finger rub)

Vestibular Exam

• Head Impulse Test: [+] Left

• BPPV Tests: Not tested

Cerebellar Screens

Hand Clap: WNL Finger-to-nose: WNL Finger-nose-finger: WNL Heel-Shin Slide: WNL

Muscle Tone

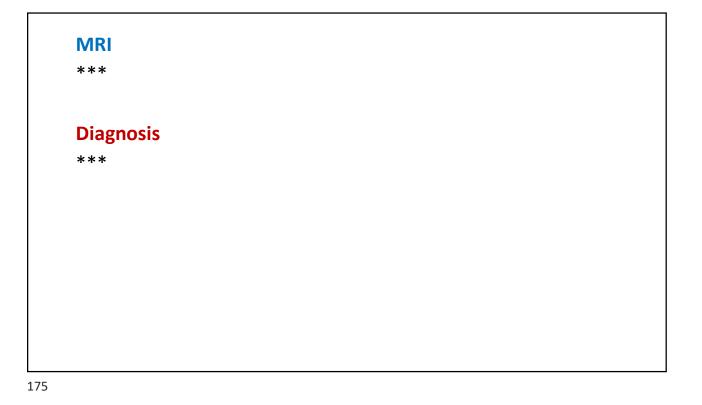
Ashworth 0 for all extremities

173

Musculoskeletal Exam

Strength and ROM WNL for bilateral UE/LE

Somatosensory Screens


Light touch WNL bilateral UE, LE, and Face


Gait

100', Independent, normal gait pattern and speed

Balance

Functional Reach WNL

50 y.o. ♂ Complaining of nausea, vomiting and dizziness.

PMH: HTN, Obesity (340 lbs)

Social Hx: Married. Has 3 steps with a rail in his home. Previously independent with gait and Activities of Daily Living

Orientation: to person, place, and time

177

Case # 4 Exam Findings Ocular Motor Exam • Range of motion is WNL • Fixation is intact • Nytagmus: [+] Direction-changing gaze nystagmus • Near Point of Convergence: WNL • Cover Test: Obvious OD exotropia • Pursuits: Saccadic (abnormal for age) • Visual Field: Intact to moving confrontation Hearing Grossly intact bilaterally (finger rub)

Vestibular Exam

- Head Impulse Test: [+] Bilaterally
- Dix-Hallpike (BPPV Test): Subjectively positive but without nystagmus
- Roll Test (BPPV Test): WNL

Cerebellar Screens

Hand Clap: WNL Finger-to-nose: WNL Finger-nose-finger: WNL Heel-Shin Slide: WNL

Muscle Tone

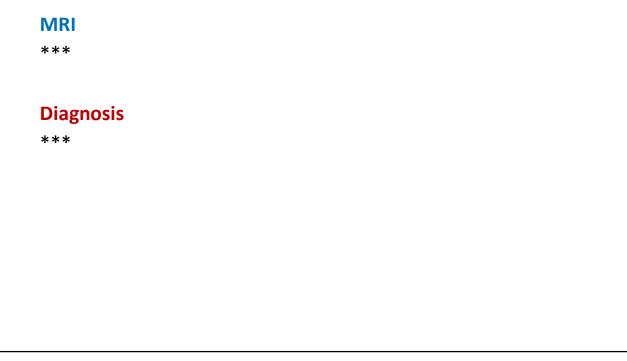
Ashworth 0 for all extremities

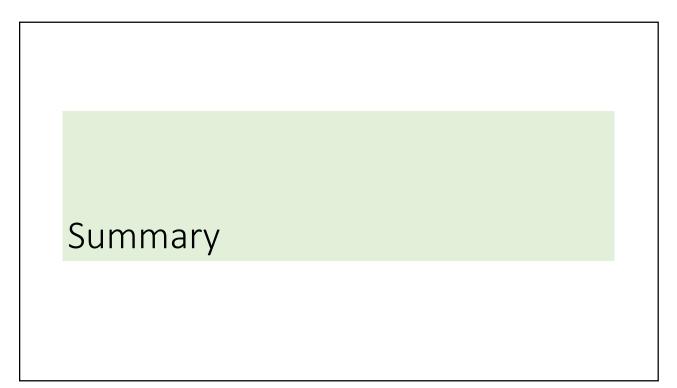
179

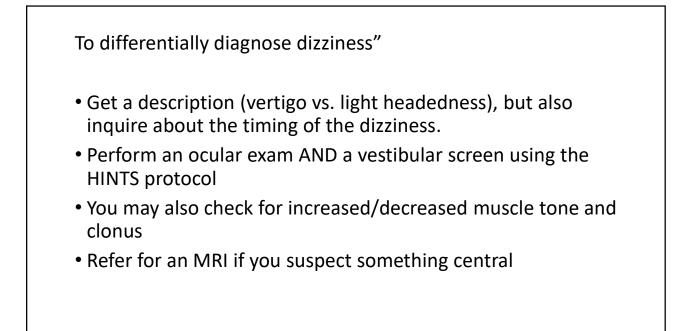
Musculoskeletal Exam

Strength and ROM WNL for bilateral UE/LE

Somatosensory Screens


Light touch WNL bilateral UE, LE, and Face


Clonus


Positive Right ankle

Balance

Unsteady static standing requiring minimal assistance

Is it central? Complains of dizziness with:		
Central Signs	Peripheral Signs	
 Dizziness worse in the light Dizziness/nystagmus upon fixation Direction changing nystagmus HINTS Exam finds: Normal Head Impulse Test AND Vertical Skew OR, Direction-changing nystagmus Positive Cerebellar Screens Abnormal muscle tone or clonus 	Dizziness worse in the dark Nystagmus improves with fixation Unidirectional nystagmus HINTS Exam finds: • Positive Head Impulse Test • No Vertical Skew • Unidirectional or no nystagmus Negative Cerebellar Screens	

